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ABSTRACT

In this study several acoustic feature sets and automatic classifiers were
investigated to determine a combination of features and classifier which would enable
accurate bottom-up speaker and vowel independent automatic recognition of initial stop
consonants in English. The features evaluated included a form of cepstral coefficients
and formants, each computed both for one static frame and as spectral trajectories over
various segments of the speech signal. The classifiers investigated included Bayesian
Maximum Likelihood (BML), artificial neural network (NN), and K Nearest Neighbor
(KNN) classifiers. The most accurate results, over 93% of the six stops correctly
identified with a speaker-independent classifier, were obtained with the BML classifier
using cepstral coefficient trajectories as a 20-dimensional feature vector. These results
for stop recognition are higher than any results previously reported for a data base of
similar diversity.

INTRODUCTION

Many workers in the field of automatic speech recognition have attempted to
devise signal processing schemes for extracting features for automatic identification of
stops [7, 8, and 9]. To date none of the speaker-independent automatic recognition
schemes have performed nearly as well as human listeners in identifying stops. Lamel et
al. [4] found that listeners can identify about 97% of initial stops correctly and 85% of
mid and final stops torrectly, even with consonants extracted from continuous speech,
from a wide variety of talkers. The objectives of our study were to use automatic
classification experiments to help define a set of acoustic features which encode
information sufficient to reliably distinguish the initial stop consonants for speaker-
independent ASR applications. We explored in detail features based on overall spectral
shape versus features based on spectral peaks (formants) and compared features based
on one static spectrum sampled at the release burst versus features based on dynamic
spectra.
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DATA BASE

Ninety-nine CVC isolated tokens were recorded for each of 30 native English
talkers (12-bit 16 kHz A-D). Ten of these talkers were adult males, ten were adult
females, and ten were children between the ages of 7 and 11. Eighty-four of these
syllables began with one of the six stop consonants /b,p,d,t,gk/, the focus of this study,
and the other 15 syllables began with one of the four consonants /h,l,m,w/ which were
needed for other experiments conducted with the vowel portions of the syllables. The
vowel in each syllable was one of the eleven vowels /aa,iy,uw,er,ih,ae,eh,a0,ah,uh,ow/
and the final consonant was one of the 9 consonants /b,d,gk,t,p,v,s,h/. Each initial stop
was paired with at least one instance of each of the eleven vowels, i.e. each initial stop
was spoken in eleven vowel contexts. The acoustic regions of all speech stimuli were
manually labeled (burst onset, beginning of vowel transition, and beginning of steady-
state vowel) for use with the automatic classification routines.

SPEECH PARAMETERS

The two feature sets investigated were formants and a form of cepstral
coefficients. Since the cepstral coefficients were computed somewhat differently than
the usual method, we refer to them as Discrete Cosine Transform Coefficients
(DCTC’s). The formants encode the peaks in the spectrum and are traditionally
considered to be the primary acoustic cues to phoneme identity. The DCTC’s encode
the smoothed overall shape of the spectrum. Thus these two parameter sets represent
two different points of view regarding the most important acoustic/phonetic features.

Formants

Formants were computed for the initial stops in a multi-stage process as follows.
The speech signal was first digitally lowpass filtered at 3.8 kHz with a 49th order FIR
linear-phase lowpass filter and resampled at 8 kHz. The speech signal was then
high-frequency preemphasized with transfer function (1-.75 z'). The signal was
windowed with a 25 ms Hanning window and a 10th order LP model was computed.
The roots of the LP polynomial were computed in order to determine up to 5 formant
candidates (frequency, amplitude, and bandwidth) for each frame. Formant candidates
were obtained for 25 frames (5 ms frame spacing), beginning at the burst for the voiced
stops and were computed for 50 frames (5 ms frame spacing) for the unvoiced stops.
Finally a formant tracking routine, which makes use of the continuity property and the
bandwidth limitation of formants, was used to track the formants from the last frame
(i.e., a vowel region) back to the burst. The resulting formant values in the initial
region of each stimulus were used to represent that stimulus. In addition to the
formants (F1, F2, and F3), the log of the formant amplitudes (A1, A2, and A3) and the
formant bandwidths (B1, B2, and B3) were also computed and used as parameters.

Cepstral coefficients

The cepstral coefficients, i.e., the DCTC’s, were computed as follows. First, the
speech signal was high-frequency preemphasized with transfer function (1-.95 z”"). The
speech signal was then windowed using a Hamming window. Depending on the length
of the window, either a 256 or 512 FFT was computed for each speech frame. Let H(f)
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denote the magnitude spectrum of a speech frame, H'(f) a nonlinearly amplitude scaled
version of H(f), H'(f) a nonlinearly warped version of H'(f), and let [H'(f)] be a portion
of H'(f') over a selected frequency range. The DCT coefficients are then defined as the
a,’s in the equation

n=N
[H(f)] = £ a,cos((n-1)x ) (D
n=1

FEATURES FOR DYNAMIC SPECTRA

Speech features were also computed for each of several speech frames, in order
to evaluate automatic recognition accuracy for the case of dynamic spectra. Several
methods were first investigated for sampling the spectra and for combining the
parameters of several frames. These methods were evaluated in terms of automatic stop
consonant recognition accuracy. The best approach found was to sample the speech
spectra with frames equally spaced starting at the burst. The value of each parameter
for each frame (i.e., a vector with a length equal to the number of frames) was then
expanded using a cosine basis-vector expansion. That is,

N
P(n) = kE C, cos((k-1) » n/(L-1)), 2)
=1

where P(n), 1 < n < L, is the parameter value for frame n, L is the total number of
frames, N is the number of cosine coefficients used to encode P, and the C, are the
cosine coefficients. Although several values for N were investigated, in general the best
results were obtained with N = 3.

CLASSIFIERS

All feature sets for the stops were evaluated in terms of their effects on
automatic classification accuracy with a Bayesian maximum likelihood Classifier (BML).
That is, each stimulus was classified according to the category for which the distance

D(x) = (xx)'R" (xx) + In|R; | -2 In P(G), 3)
1<i< M,

is minimized. In Eq. (3) x, is the centroid for category i, R, is the covariance matrix for
category i, and P(G,) is the a priori probability for category i. Thus each category is
characterized according to the centroid of all the training data in that category and the
covariance matrix of the training data for that category. This classifier is optimum if the
feature vector components are multi-variate Gaussian [2].



In addition to the BML classifier experiments were also performed with a
two-layer feedforward perceptron-like neural network (NN) classifier [5] and a K
nearest-neighbor (KNN) classifier [2]. These alternate classifiers were used to verify
that the relative rankings of feature sets determined via the BML classifier were also
obtained with alternate classifiers, and were not merely specific to one particular
classifier.

In all of the automatic classification experiments reported in this paper the
speakers used for training the classifier were different than those used for testing the
classifier. More specifically, 15 speakers, five adult males, five adult females, and five
children, were used to train the classifier and the other 15 speakers of our data base,
five adult males, five adult females, and five children, were used for evaluation. Thus
all comparisons of features sets are derived from speaker-independent automatic
recognition experiments.

EXPERIMENTS

Classification experiments based on burst spectra

Our first series of automatic classification experiments was conducted to optimize
the DCTC computations for identification of initial stop consonants based on the burst
spectrum computed from one 25.6 ms speech frame sampled at the burst onset of each
stimulus. Experiments were conducted to evaluate various nonlinear amplitude scales,
nonlinear frequency scales, frequency ranges, and the number of DCTC’s used as
features, in terms of their effect on automatic classification accuracy of initial stops.
Based on these experiments a log amplitude scaling, a bilinear frequency warping [6]
with a coefficient of .5, and a frequency range of 200 to 6000 Hz, were selected.

DCT coefficients 2-10, computed as outlined above, were used as an encoding of
the smoothed spectral shape of the burst spectrum. The first three formants and their
log amplitudes were also computed for the burst spectrum. Automatic classification
experiments were then conducted for three parameter sets (DCTC's; formants; formants
+ amplitudes) for each of three conditions: (1), all six stops (6S); (2), voiced stops only
(3V); and (3), unvoiced stops only (3U). For the case of all six stops both the place
and voicing features must be distinguished whereas for conditions 2 and 3 only place of
articulation must be determined. Figure 1 summarizes the training and test results for
these conditions and these parameter sets, all based on the BML classifier.

The results given in Fig. 1 indicate that overall spectral shape features are much
better for identifying the stops than are the values of formants in the burst interval. As
expected, none of the features are sufficient to reliably distinguish all six stops, with the
highest test recognition rate of only 64% for this condition. For the cases of voiced
stops or unvoiced stops considered individually, place of articulation can be identified
with over 82% accuracy based on spectral shape versus approximately 50% based on the
formant values or 73% based on formants and their amplitudes. For all conditions,
spectral shape is far more effective for classifying the stops than formants alone. The
improvement in recognition accuracy in adding the formant amplitudes to the formant
frequencies, which thus adds information about overall spectral shape, also lends support



to the hypothesis that the shape of the spectrum carries the most information. Note,
however, that the addition of bandwidths to the formant + amplitude parameter set did
not improve the recognition rate. In any case, even the 82% and 84% rates obtained for
voiced and unvoiced consonants respectively, are far less than the rates possible by
human listeners, leading to the conclusion that although the spectral shape of the burst
onset carries information about place of articulation, this information is incomplete.

Classification experiments based on dynamic spectra

The experiments reported in the previous section indicated that overall spectral
shape shows promise for cueing stop consonant identity, but that the global spectral
shape derived from a single frame is insufficient. Thus a number of experiments were
conducted to identify features from several frames of speech data beginning at the burst
onset. One series of automatic classification experiments was conducted to determine
the approximate time interval, measured from the beginning of the burst of each
stimulus, over which the dynamic features should be extracted to classify initial stops. In
these tests dynamic features were extracted from 20, 30, 40, 50, 60, 75, and 90 ms
intervals and a classification experiment was performed for each of these intervals. The
series was repeated for DCTC’s and for formants + amplitudes. In all cases and for
each time interval, the parameters for each frame were encoded with a three-term
cosine basis vector expansion over time. A BML classifier was used. The results of
these tests indicated that test results for both the DCTC’s and formants + amplitudes,
increase as the time interval used for feature extraction increases up to 60 ms.
However, the results were consistently lower for the formant trajectories versus the
DCTC trajectories.

Figure 2 summarizes the automatic classification results obtained with DCTC
trajectories, formant trajectories, or formant and amplitude trajectories, for the 60 ms
interval beginning with the burst onset. The figure shows that for each condition, the
highest recognition rates are obtained with DCTC’s, followed by formants + amplitudes,
followed by formants alone.

Additional tests were performed to investigate the role of the initial transition
interval, without the burst, in supplying cues for initial stops. Therefore all the
classification tests used for the results shown in Fig. 2 were repeated with identical
signal processing, except that the features were timed to begin with the initial transition
rather than the burst onset. The results of this experiment are given in Fig. 3.
Comparing the results given in Fig. 3 with the results given in Fig, 2, for every condition
and for each feature set, we can see that the identification of initial stops significantly
decreases when the features are extracted from a time interval timed to begin at the
start of the initial transition rather than at the start of the burst. For example, the
recognition rate of the six stops using DCT coefficients extracted from a time interval
starting at the first voicing pulse is 55.3% compared to 93.7% if the burst is included.
Even for the case of the three voiced stops, and with DCT coefficients as the parameter
set, the recognition rate drops to 81% if the burst is not included versus 95% if the
burst is included. Therefore, these results indicate that the burst section is essential for
reliable identification of initial stops.



Alternate classifiers

The results of a comparison of the BML classifier with the KNN and NN
classifiers mentioned previously are given in Fig. 4. The KNN was implemented for K
= 1, since this gave the best resuits. The NN classifier was implemented as a two-layer
feedforward perceptron structure with 20 hidden nodes. The tests were performed with
spectral trajectories extracted from the 60 ms interval beginning with the burst. For
each classifier, the figure shows that the best recognition rates were obtained with
DCTC parameters followed by formants + amplitudes followed by formants alone. In
general the BML classifier results in the highest recognition rates. For the case of the
formants, however, the NN classifier performs better than the BML classifier,
undoubtedly because the formants violate the multivariate Gaussian assumption of the
BML classifier. Nevertheless, in summary, the highest overall recognition rates were
achieved with DCTC trajectories and the BML classifier.

CONCLUSIONS

In this study, we compared two different feature sets, spectral shape features
(DCTC’s) versus formants, as acoustic cues for initial stops. We also compared static
versus dynamic features, and investigated the role of initial transitions as cues for initial
stops. Our experiments indicate that the six initial stops can be automatically classified
in a speaker-independent manner with over 93% accuracy based on dynamic spectral
shape features spanning a time interval of approximately 60 ms beginning with the
release of the burst. The error rate increases dramatically if features are extracted from
a single 25 ms frame, if formants and amplitudes are used as parameters rather than
DCTC’s, or if the burst is missing from the interval sampled. The error rate for the test
speakers also increased 22% if the DCTC coefficients were computed without frequency
warping and over the full frequency range. These results were obtained with broad
range of speakers (men, women, and children) and with a large number of vowel
contexts (11). We determined that a 20-dimensional feature vector, representing the
smoothed DCTC trajectories was sufficient to account for both vowel context and
speaker effects. Thus the dynamic properties of smoothed spectral shape convey a great
deal of information about both place of articulation and the voicing features for initial
stop consonants. The recognition results obtained in our study are higher than any
results reported in the literature for speaker and vowel independent initial stop
recognition. We believe the techniques used in our work could be applied to slightly
longer signal segments and a much larger data base to obtain even higher automatic
recognition rates for initial stops.
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Figure 1. Summary of automatic recognition results from one static spectrum for various
conditions. These include six stops, unvoiced stops, and voiced stops, for each of three
parameter sets.

100
%
R
E
C
0
G
N
1
T
1
0
N
6S 3v
% TRN | 94.8( 95 |97.2 51.1|74.8 |63.7 85.2 (909 86.7
% TST 93.7| 95 | 94.7 47.3173.856.7 78.8 842 82

DCTC's F's F's+A's
%2 TRN IR % 1sT

Figure 2. Summary of automatic recognition results obtained from dynamic spectra for
various conditions as noted.
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Figure 3. Summary of automatic recognition results obtained from dynamic spectra,
timed to begin with the beginning of the vowel transition.
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Figure 4. Automatic classification rates as a function of classifier type.



